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A technique is described for simulating the motion of individual particles in a homoge- 
neous stationary field of turbulence by the use of numbers drawn at random from a 
normally distributed set. The turbulence is approximated by a Brownian motion Markov 
process and the scales of motion are assumed to lie in the inertial subrange. 

An application of the technique in the study of the growth of droplets in a turbulent 
cloud is also described. 

INTRODUCTION 

A substantial literature exists describing the use of simulation techniques to 
solve a range of problems involving essentially random processes (e.g. [ 1,2]). The 
work described in this paper was motivated by a desire to study the effects of turbu- 
lence on the size distributions of droplets growing in clouds. Several workers 
(e.g. D-61) have obtained analytical solutions to the droplet-growth equations in 
such conditions, but found it necessary to make rather severe assumptions. Their 
restrictions can be removed by simulating the fluctuating updraughts associated 
with the turbulent motion and obtaining a numerical solution of the full droplet 
growth equations. 

Obukov [7] suggested that some problems of atmospheric diffusion could be 
solved by approximating turbulence in the atmosphere to a Brownian motion 
Markov process. Simulation techniques using this approximation have been 
derived by several workers (e.g. [S, 91). In particular, Kraichnan [9] developed a 
technique to simulate the motion of a particle through a field of turbulence with an 
arbitrary energy spectrum. For many purposes, however, it is only necessary to 
consider scales of motion which lie in the inertial subrange and in these circum- 
stances the simpler simulation technique described in this paper can be used. 

In this work it is assumed, firstly, that the turbulence is stationary in time and 
homogeneous in space and, secondly, that the velocities in any given direction of 
a large number of particles are normally distributed about the mean velocity in 
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that direction. It is also assumed that particles having the same velocity component 
at a given instant will have a distribution of velocity components some time later 
which preserves the assumptions of stationarity and homogeneity. The assumption 
that the scales of motion are in the inertial subrange (i.e., that the effects of 
viscosity can be neglected) implies that the distribution of velocity components 
depends only on the time interval and the initial velocity. Warner [lo] has also 
attempted to simulate the growth of cloud droplets but the velocity-simulation 
technique he used did not preserve the stationarity of the turbulence and is therefore 
not accurate over long integration periods. 

THE SIMULATION TECHNIQUE 

The assumption that the components of the velocities of particles in a given 
direction are normally distributed about the mean velocity component in the same 
direction, i& means that the probability that a particular particle will have a velocity 
component in the range U-(U + du) is given by 

P(u) du = (24i,” uu 
exp [- k (%,“I du, 

where CT, is the standard deviation of the velocity components of all particles in the 
turbulent field. 

The initial velocity component of a typical particle, u0 , can be selected by the 
following relationship 

u. = U + nouu , (2) 

where n, is a number drawn at random from a set of numbers which form a normal 
distribution with unit standard deviation and zero mean. 

Now let the probability that a particle which has an initial velocity’ between U, 
and u, + duo will have a velocity between u, and u, + du, at time T be 
P(ur , u,,) du, duo . Then the probability, P(uJ du, , that any particle will have a 
velocity between u, and u, + du, at time T, is given by 

J’(u,) du, = [ j-+m %J P(w , 4 duo] du, . --m (3) 

The assumption that the field of turbulence is homogeneous and stationary will 
clearly be satisfied if the distribution of velocities at time T is also a normal distri- 

1 Strictly “the velocity component in a given direction,” but since it is implicit in the treatment 
that each component of the velocity is independent, this expression is abbreviated here and sub- 
sequently to “the velocity” of the particle. 
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bution with a mean of 6 and a standard deviation, uu . It is not difficult to show by 
substitution into Eq. (3) that this condition is satisfied if 

PO4 > %I> = (27r)i/z u, exp 
1 

[ i 
2.4, - (p7(uo -U) + U} 2 -- 

2 )I > (JT (4) 

where 

PT2 = (G2 - %2Y%2, (5) 

i.e., the velocities of particles with initial velocity U, are normally distributed about 
{p7(u,, - U) + U} with a standard deviation u7 after time T. 

It follows from Eq. (4) that the velocity at time T of a typical particle having an 
initial velocity u0 can be selected by the relationship 

u7 = ((1 - P7F + P&l + %U7 > (6) 

where n, is another number drawn at random from the normally distributed set 
with zero mean and unit standard deviation. 

The complete velocity record of a typical particle can be simulated by noting 
that in general 

uiT = ((1 - PJ~ + P~~MJ + w, , (7) 

where uiT and uciP1j7 are the velocities of the particle at times iT and (i - I)T, 
respectively, and ni is a number drawn at random from the normally distributed set. 

Now it is clear that if the probability that a particle will have a given velocity 
after a certain time depends only on the time interval and its initial velocity, then 
the following relationship must be valid 

By substituting expressions of the type given by Eq. (4) for P(u, , ~3, etc., it can 
be shown that this condition is satisfied provided that 

P2T = PT2. 

Equation (9) will, in general, be satisfied if 

P, = A exp(+T), 

where T is a characteristic time. 

(9) 

(10) 

However, when 7 + 0, it is clear that the mean velocity of a group of particles 
with initial velocity u0 will tend to u0 , i.e., lim,,, ((1 - pT)ii + uO} = U, . This is 
true if lim,,,p, = I, which in turn requires that A = 1. 

Further, if 7 is short, but long enough for viscous forces to be unimportant, then 
according to the Kolmogoroff hypothesis, u, will be a function of E and T only, 
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where E is the energy dissipated in unit mass of the turbulent fluid in unit time. 
It then follows from the dimensions of the quantities involved that 

uT2 = ker (11) 

where k is a dimensionless constant, which for the purposes of simulation can be 
assumed to have a value of unity. 

Now from Eqs. (5) and (10) we have 

07 2 = uu2(1 - exp(--27/T)} (12) 

so that the requirement for short times is that au2{1 - exp(-27/T)} % ET. 
Expanding the exponential in the usual way, and neglecting second and higher 
powers of r/T, gives T = 2uu2/c 

On the other hand, when T -+ co the distribution of particles with initial velocity 
u0 must tend to become identical with the distribution of all particles, i.e., 
lim,,, P(u, , u,,) = P(u,). This is true if lim,,,p, = 0 and lim,,, u, = u, and it 
will be seen that both of these conditions are also satisfied since the exponent is 
negative in Eqs. (10) and (12). 

Finally, it may be noted that the full expression for ur2 derived above, namely 
uu2{1 - exp(-6T/U,2)}, may be replaced by the simpler expression uT2 = ET 

provided that uT2/uW2 Q 1. This approximation is equivalent to underestimating 
the true value of the energy dissipated by an amount SE which is approximately 
equal to (E/~)(u,~/u,~). Taking typical values for turbulence in a cumulus cloud, 
E = 1O-2 m2 s-~, CJ~ = 1 .O m s-l, then if T is chosen to be 1 s, the error in the assumed 
value of E is only 0.5 %. 

In the same way, the exponential expression for p7 can be replaced by 
(1 - ET/2Uu2) when 7 iS Small. 

To sum up, we conclude that any component of the velocity of a typical particle 
moving in a field of turbulence having the assumed characteristics can be simulated 
by means of the following relationships. 

where 

and 

UT 2 = Uu2{1 - eXp(-ET/U,‘)}, 
W ET for Small 7, 

p7 = eXp(-cT/2Uu2), 

m 1 - ET/2U,2 for small 7. 

(13) 
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The simulation technique requires a sequence of numbers drawn at random 
from a normally distributed set of numbers with a mean of zero and unit standard 
deviation. A suitable pseudorandom sequence of numbers was generated by 
adding together N successive terms of another pseudorandom sequence in which 
the numbers were evenly distributed in the range O-l. The resultant sequence is 
easily transformed into the required set with zero mean and unit standard deviation. 
The evenly distributed numbers were themselves generated by the Lehmer con- 
gruence method [l] in which the (i + I)-th number is obtained by the relation 

ni+l = kni mod m. (14) 

The computations were carried out on a computer having 48 bit words. It was 
therefore convenient to choose m = 24e. With this value of m, the maximum length 
of the cycle of 246 is obtained if k = -3 mod 8, a condition which is conveniently 
satisfied by choosing k to be the largest odd power of 5 which can be contained 
in one word of the computer store-in this case 519. The starting value, no , can be 
any convenient odd number. Numbers generated in this way were subjected to 
several statistical tests and the performance was satisfactory with N > 8. However, 
the true test of a sequence of pseudorandom numbers is to test them in the situation 
in which they are to be used and this was achieved by analyzing the velocity traces 
which were simulated. 

RG. 1. Simulated-velocity trace of a typical particle in a field of turbulence with a mean 
energy dissipation of 0.01 ma s-~. The mean and standard deviation of the particle velocities are 
1 m s-l. 
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SIMULATED VELOCITY TRACES 

Figure 1 shows part of a typical simulated-velocity trace for a particle with a 
mean velocity, U, of 1 m s-l. The standard deviation of the velocities was 1 m s-l 
and the turbulent energy dissipation, E, was 0.01 m2 s3, these values being typical 
of small cumulus clouds. The velocities were calculated at 1 s intervals. The 
similarity between this trace and the fluctuations observed in turbulent air is 
obvious. 

TABLE I 

Results of Chi-Squared Test on a Comparison of the Distributions of Particle 
Velocities after Several Times, and the Theoretical Normal Distributions 

4T 

0 

0.05 

0.01 

0.5 

1.0 

5.0 

10.0 

50.0 

100.0 

x2 for 3 degrees 
of freedom 

Probability that 
calculated value 

of x2 will be 
exceeded 

1.22 0.78 

2.26 0.52 

0.19 0.98 

2.84 0.42 

0.88 0.83 

8.07 0.05 

2.81 0.43 

9.23 0.01 

3.47 0.33 

In order to check that the technique had correctly simulated stationary turbu- 
lence, the velocities of 100 particles, initially having different velocities, were 
calculated at time t. For each time the distributions were split into four categories, 
Ut < ii - au , U - u,, < ut < ii, ii < ut < ii + uU and ut > ii + CT, and the 
number in each category determined. A chi-squared test for three degrees of 
freedom was then applied at each time and the results are tabulated in Table I, 
together with the probability that the value of chi-squared found would be exceeded 
if the observed velocities were drawn at random from a distribution with a mean 
of u and standard deviation uU . The times in this table were expressed in non- 
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dimensional form by dividing by the characteristic time, T (= 2au2/c). The values 
of &i-squared found in this test are consistent with the assumption of stationary 
turbulence. 

The power spectrum is an important characteristic of a randomly fluctuating 
record. In order to correctly simulate turbulent motion in the inertial subrange, 
the energy per unit mass of the fluid in unit frequency range, E(f), must be 
inversely proportional to the square of the frequency, f, a result obtained by 
dimensional analysis in this range where E(f) depends only on E andf. 

The exact form of E(f) can be derived as follows (see [I I]). Since the turbulent 

-A 1 _I 
ILL-5 :o -A i0 -3 10-2 10-l 100 

FIG. 2. Power spectra obtained from the motion of a particle for turbulent energy dissipation 
rates, E, of IO-I, 10-a and IO-* mB s-*. The curves were obtained from Eq. (19). 
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field is stationary the covariance of the velocities of a particle at two times separated 
by an interval r can be defined as 

(15) 

where ut and u~+~ are the velocities of the particle at times t and t + T respectively. 
The average value of ut - utfT is clearly given by 

103- 

101- 

lo'- 

.lOO- 

IO-‘- 

IlP- 

IO-‘- 
IO 

FIG. 3. Variation of the energy per unit frequency range as a function of the energy dissipa- 
tion rate at three frequencies, f, higher than f. . 
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Substituting for the variables and noting that C(-7) = C(+T) we obtain 

C(T) = uu2 exp(-•E 1 T I/20,3 = uU2 exp(-[ T i/T), 

where T is the characteristic time. Then, as shown in [I l] 

(1’5) 

E(f) = ffm c(T) COS(277”T) dr, (17) 
J --m 

which gives on integration 

WI = l 4+f2 +fo”), (18) 

where& = l/T = ~120,~. Clearly when f > f. , E(f) oc f --2 the result expected on 
dimensional grounds. 

A spectral analysis using a Fast Fourier Transform routine [12] was carried out 
on three separate records consisting of the simulated velocities of a particle at 
1024 successive intervals of 1 or 5 s in turbulent fields with values of E of 10-3, 1O-2 
and 10-l m2 s-~, respectively. The value of uV was chosen to correspond to a scale L, 
defined as D,~/.z, of 100 m. The resultant spectra are shown in Fig. 2 which shows 
that E(f) varies with f as predicted by Eq. (18). Fig. 3 shows that E(f) cc E when 
f>h* 

These tests have indicated that the simulation technique is a valid approximation 
for the simulation of particle motion in a field of homogeneous turbulence to which 
the initial assumptions are applicable. 

APPLICATION OF THE SIMULATION TECHNIQUE 

The simulation technique can be used to calculate the trajectories of individual 
particles moving in a field of homogeneous turbulence when the individual motion, 
rather than a statistical description, is required. The displacement xi+, , can be 
obtained from that at a previous time, t, using the equation 

X t+7 = Xt + Ut ’ 7. (19) 

The use of this equation implies that the time step, T, is sufficiently short for the 
change in velocity to be neglected. This also implies that u, < uU . 

The displacements of six typical particles were computed at 5 s intervals using 
Eq. (19) for a case in which the mean velocity, ii, was zero, the energy dissipation, E, 
was 1O-2 m2 s-~ and the characteristic time, T, was 100 s. The initial velocities were 
chosen at random from the distribution given by Eq. (2). The results, which were 
output as a function of time using a special graphing program, are shown in Fig. 4. 
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The numerical simulation technique was used to solve the equations for the 
growth of droplets by condensation in a turbulent cloud. Detailed results of this 
investigation will be published elsewhere [13] but an outline of the solution of the 
problem is given below. 

The set of equations describing the changes in pressure, p, temperature, T, 
supersaturation, 0, and liquid water content, w, in a moving parcel of air are 

(d~ldt) = -(mzplRWzldt), (20) 

WV) = Wd(WdO - WcmJWdt), (21) 

W4 = (wdJW(OLJ - 11 - (dwldt){(mu/Rc,,>(LIT>2 + (P/EPA 
(22) 

(dw/dt) = 47Tr+?N(dr/dt), (23) 

where 

Z is the height of the parcel, 
R is the universal gas constant, 

g is the acceleration due to gravity, 
m, is the molecular weight of dry air, 
m, is the molecular weight of water vapour, 
E is the ratio m,lm, , 

L is the latent heat of vaporization of water, 
c,, is the specific heat of dry air at constant pressure, 

PS is the saturation vapour pressure of water, 

and we have assumed that the parcel contains N drops/unit mass of radius r and 
density p. The relation between dr/dt and r, u, p, T has been given by Mason and 
Ghosh [14]. 

These equations can be integrated numerically if the variation of dz/dt, the 
vertical velocity of the parcel, with time, is obtained by the simulation technique. 
Analytical solutions of these equations, using a distribution of velocities consistent 
with the turbulence, are not possible without considerable simplifying assumptions. 
A large number of parcels were considered, each initially containing droplets of the 
same radius. At various heights above the starting level the droplet sizes were 
compared. It was found that at a particular height the spread in radii was very 
small, the small spread being due to the close correlation between the super- 
saturation and the vertical velocity which is indicated in Fig. 5 for a typical 
particle. 
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FIG. 5. The variation with time of the velocity (solid line) and supersaturation (dashed line) 
of a typical parcel of air. The mean updraught is 1 m s-l and the turbulent energy dissipation 
0.01 ma s-*. 

CONCLUSIONS 

A simple method of simulating the velocity of a particle moving in a field of 
uniform homogeneous turbulence involving only the generation of a set of random 
numbers with a Gaussian distribution has been established. The velocities calculated 
using this method have been shown to be consistent with the assumptions made 
about the turbulence. An application of the model has been made to the problem 
of droplet growth in turbulent clouds. 
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